Inferring Gene Regulatory Networks from Asynchronous Microarray Data

نویسندگان

  • David Oviatt
  • Mark J. Clement
  • Quinn Snell
  • Kenneth Sundberg
  • Jared Allen
  • Randall J. Roper
چکیده

Modern approaches to treating genetic disorders, cancers and even epidemics rely on a detailed understanding of the underlying gene signaling network. Previous work has used time series microarray data to infer gene signaling networks given a large number of accurate time series samples. Microarray data available for many biological experiments is limited to a small number of arrays with little or no time series guarantees. Asynchronous Inference of Regulatory Networks (AIRnet) provides gene signaling network inferrence using more practical assumptions about the microarray data. By learning correlation patterns from all pairs of microarray samples, accurate network reconstructions can be performed with data that is normally available in microarray experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Coarse-Grained, Discrete Systems for Data-Driven Inference of Regulatory Gene Networks: Perspectives and Limitations for Reverse Engineering

This contribution gives an initial report of a new project exploring the perspectives and limits of reversely engineering regulatory gene networks from gene expression data. The availability of such data is currently increasing dramatically due to the microarray technology. However, inferring the underlying network from expression data is difficult. We address the reverse engineering problem by...

متن کامل

Inferring gene networks from time series microarray data using dynamic Bayesian networks

Dynamic Bayesian networks (DBNs) are considered as a promising model for inferring gene networks from time series microarray data. DBNs have overtaken Bayesian networks (BNs) as DBNs can construct cyclic regulations using time delay information. In this paper, a general framework for DBN modelling is outlined. Both discrete and continuous DBN models are constructed systematically and criteria f...

متن کامل

Inferring genetic networks from DNA microarray data by multiple regression analysis.

Inferring gene regulatory networks by differential equations from the time series data of a DNA microarray is one of the most challenging tasks in the post-genomic era. However, there have been no studies actually inferring gene regulatory networks by differential equations from genome-level data. The reason for this is that the number of parameters in the equations exceeds the number of measur...

متن کامل

Inferring gene regulatory networks from multiple microarray datasets

MOTIVATION Microarray gene expression data has increasingly become the common data source that can provide insights into biological processes at a system-wide level. One of the major problems with microarrays is that a dataset consists of relatively few time points with respect to a large number of genes, which makes the problem of inferring gene regulatory network an ill-posed one. On the othe...

متن کامل

Iteratively Inferring Gene Regulatory Networks with Virtual Knockout Experiments

In this paper we address the problem of finding gene regulatory networks from experimental DNA microarray data. We introduce enhancements to an Evolutionary Algorithm optimization process to infer the parameters of the non-linear system given by the observed data more reliably and precisely. Due to the limited number of available data the inferring problem is under-determined and ambiguous. Fur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009